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Abstract—Modern distributed storage systems often deploy
deduplication to remove content-level redundancy and hence
improve storage efficiency. However, deduplication inevitably
leads to unbalanced data placement across storage nodes, thereby
degrading read performance. This paper studies the load balance
problem in the setting of a reliable distributed deduplication
storage system, which deploys deduplication for storage efficiency
and erasure coding for reliability. We argue that in such a
setting, it is generally challenging to find a data placement that
simultaneously achieves both read balance and storage balance
objectives. To this end, we formulate a combinatorial optimization
problem, and propose a greedy, polynomial-time Even Data
Placement (EDP) algorithm, which identifies a data placement
that effectively achieves read balance while maintaining storage
balance. We further extend our EDP algorithm to heterogeneous
environments. We demonstrate the effectiveness of our EDP
algorithm under real-world workloads using both extensive
simulations and prototype testbed experiments. In particular, our
testbed experiments show that our EDP algorithm reduces the
file read time by 37.41% compared to the baseline round-robin
placement, and the reduction can further reach 52.11% in a
heterogeneous setting.

I. INTRODUCTION

Demands for scalable storage services have been surging

in these years. Distributed storage systems aggregate multiple

storage nodes (or servers) as a single storage pool, and provide

scalable platforms for managing an ever-increasing scale of

data. One major storage application is backup storage, in

which users regularly generate data backups for their important

data. To provide scalability, many commercial backup service

providers [2, 3, 4] have deployed distributed storage systems

for backup management.

Deduplication is a well-developed technology that improves

storage efficiency of distributed storage systems. Backup stor-

age products often use deduplication [9, 29] to remove content-

level redundancy. Deduplication divides data into chunks,

and stores only system-wide unique chunks and uses small

references to refer duplicate chunks to already stored unique

chunks. Deduplication can effectively reduce the storage space

in practical storage workloads, e.g., by 20× [5].

However, deduplication causes duplicate data chunks to

refer to existing identical data chunks that are scattered across

different nodes in an unpredictable way, thereby making

load balance difficult to achieve. Conventional data placement

is unaware of deduplication, and attempts to write similar

amounts of data to different nodes to maintain storage balance.

Without deduplication, the similar amounts of data are read

from different nodes, so read balance is also maintained.

However, when deduplication is enabled, the chunks of a

file may refer to existing duplicate chunks of another file

in different nodes. Thus, file chunks may be clustered in a

small number of nodes, thereby degrading read performance.

In heterogeneous environments where nodes have varying I/O

bandwidths [8], the degradation of read performance can be

even more severe if the file chunks are clustered in low-

bandwidth nodes. Poor read performance is undesirable for

backup storage systems, as it prolongs the restore window. It

also lengthens the system downtime during disaster recovery.

In this paper, we study the load balance problem in a reli-

able distributed deduplication storage system, which deploys

deduplication for storage efficiency and erasure coding for re-

liability. Our storage system setting is similar to those in prior

studies [9, 18, 19]. While the load balance problem described

above is due to deduplication, we include erasure coding in

our analysis to reflect a more practical storage system setting

that addresses both storage efficiency and reliability.

We argue that in such a system setting, conventional data

placement cannot simultaneously achieve both read balance

and storage balance objectives. This motivates us to identify a

deduplication-aware data placement policy that addresses the

trade-off between read balance and storage balance. We make

the following contributions.

• Optimization problem: We formulate a combinatorial

optimization problem, whose objective is to find a data place-

ment policy that maximizes read balance, while all nodes store

similar amounts of data. Our problem formulation is based on

parallel I/O access mode in a distributed storage system. It

also addresses reliability based on erasure coding. We further

extend the problem for heterogeneous environments.

• Even data placement (EDP) algorithm: The optimiza-

tion problem is difficult to solve since it has a huge solution

space and depends on the deduplication pattern. We thus

propose a greedy Even Data Placement (EDP) algorithm,

which determines an efficient data placement in polynomial

time. We also propose an extended cost-based EDP (CEDP)

algorithm to balance the read/write cost distributions.

• Prototype implementation: We implement a distributed

storage system prototype that incorporates both deduplication

and erasure coding. Our prototype is deployable in a net-

worked environment.

• Simulations and testbed experiments: We conduct sim-978-1-4673-7113-1/15/$31.00 c©2015 IEEE



ulations and testbed experiments under real-world workloads.

We show that the baseline approach used in conventional data

placement causes the data distributions of some files to deviate

from the even distribution by over 50%, yet EDP effectively

balances the data distribution. Testbed experiments show that

our EDP algorithm reduces the file read time of the baseline

by 37.41% and 52.11% in homogeneous and heterogeneous

settings, respectively.

The rest of the paper is organized as follows: Section II

presents the basics of reliable distributed deduplication sys-

tems. Section III explains the load imbalance issue via a

motivating example. Section IV formulates the optimization

problem that addresses load balance. Section V presents our

proposed algorithms. Section VI describes the implementation

details of our prototype. Section VII presents results from

simulation and testbed experiments. Section VIII presents

related work, and finally Section IX concludes the paper.

II. BASICS

We present background details of a reliable distributed

deduplication storage system considered in this paper.

A. Deduplication

Deduplication [23] improves storage efficiency by removing

data with identical content. It divides input data into fixed-size

or variable-size chunks, each of which is identified by a finger-

print computed by a cryptographic hash (e.g., MD5, SHA-1)

of the chunk content. For variable-size chunking, the chunk

boundaries are defined by content (e.g., Rabin fingerprinting

[24]), and the chunk size distribution is configured by the

average, minimum, and maximum chunk sizes. In both fixed-

size chunking and variable-size chunking, two chunks are said

to be identical if their fingerprints are identical, and we assume

that the chance of fingerprint collisions of different chunks is

negligible [23]. We also assume that a deduplication system

maintains a fingerprint index to keep track of the chunks that

are already stored.

This paper focuses on inline deduplication, which removes

redundancy on the write path. Specifically, for a given set

of chunks to be written, we first compare them, by querying

the fingerprint index, with the currently stored chunks. If the

fingerprint of a written chunk is new to the index, then the

system regards the chunk as a unique chunk, meaning that the

chunk will be stored and its fingerprint will be added to the

index. Otherwise, if the fingerprint already exists, the system

regards it as a duplicate chunk, meaning that the chunk is

identical to another unique chunk of some previous files and

will not be stored. The system will create a reference for the

duplicate chunk to refer to an already stored chunk.

B. Erasure Coding

We consider a distributed storage system that achieves

reliability via erasure coding, which provides higher fault

tolerance than replication, but incurs significantly less storage

overhead [28]. We consider an (n, k) erasure code configured

with two parameters n and k, where k < n. It evenly divides

data into k equal-size data chunks, and encodes them to

form additional n − k parity chunks, such that any k out of

n data/parity chunks can reconstruct the original data. The

collection of n data/parity chunks, which we call a stripe,

will then be distributed to n distinct nodes.

If some data chunks (no more than n−k) are unavailable due

to node failures, reads to unavailable data chunks are degraded,

as they need to retrieve any k data/parity chunks of the same

stripe from other non-failed nodes for decoding.

C. Integration

To deploy both deduplication and erasure coding in a dis-

tributed storage system, we first apply deduplication to remove

duplicate chunks, followed by applying erasure coding to the

remaining unique chunks. Specifically, after deduplication, we

divide data into non-overlapping groups of k unique chunks

that are considered to be the data chunks of an erasure coding

stripe. We then encode the k data chunks to form additional

n− k parity chunks.

If fixed-size chunking is used in deduplication, the size of

each encoded chunk will remain the same. On the other hand,

if variable-size chunking is used, we first pad each k unique

chunks with zeros to the maximum chunk size that has been

configured before encoding. We store only the non-padded

data chunks, and the parity chunks that have the maximum

chunk size. If we need to decode unavailable data chunks due

to failures, we first locally pad all chunks with zeros to the

maximum chunk size before decoding.

III. LOAD BALANCE

Load balance is critical to the performance of a distributed

storage system. We consider two aspects of load balance,

namely read balance and storage balance, in which the system

reads and stores the same (or similar) amount of data via

each node, respectively. In storage systems with homoge-

neous nodes and without deduplication, storage balance evenly

distributes data across nodes, and hence also implies read

balance. Storage balance can be achieved by round-robin or

random data placements. When erasure coding is used, parity

declustering [13] can balance data and parity distribution by

placing stripes across different subsets of nodes (assuming that

the number of nodes is larger than the stripe size n).

In this work, we define the baseline policy for conventional

data placement as follows. If the number of storage nodes is

equal to the erasure coding stripe size, then we assign the

data chunks to storage nodes in the round-robin fashion and

keep the parity chunks rotated across stripes. Otherwise, if

the number of storage nodes is larger than the erasure coding

stripe size, then we first randomly select the same number

of storage nodes as the stripe size as in parity declustering,

followed by assigning the data chunks to the selected nodes in

a round-robin fashion and keeping the parity chunks rotated

across stripes.

However, with the baseline placement policy, deduplication

inherently leads to uneven data distribution, thereby breaking

the connection between read balance and storage balance. We
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Fig. 1. Layouts of the baseline policy with/without deduplication (the data
and parity chunks are represented in white and gray colors, respectively).

TABLE I
FILE READ TIMES OF THE BASELINE WITH/WITHOUT DEDUPLICATION.

f1 f2 f3 f4 f5

baseline (no dedup) α/β α/β α/β α/β α/β

baseline (dedup) α/β 2α/β 2α/β 3α/β 2α/β

motivate this issue via a toy example shown in Figure 1.

Figure 1(a) shows a stream of five files with four chunks

each, and we write them to a five-node storage system using

(5, 4) erasure coding (i.e., each stripe has four data chunks

and one parity chunk). We assume parallel I/O accesses, in

which read/write requests are issued to the storage system in

parallel. Let α be the chunk size, and β be the I/O bandwidth

of each storage node.

Figures 1(b) and 1(c) show the data layouts of the baseline

policy without and with deduplication (the latter stores only

unique chunks), respectively. With deduplication, although we

write similar numbers of unique chunks to different nodes (the

numbers differ by at most one), the chunks of a file may be

clustered in a single node, thereby increasing the file read

time. For example, three of four chunks of file f4 are stored

in node 2 (see Figure 1(c)). Table I shows the resulting read

times of different files. We observe that the read times of files

f2, f3, f4, and f5 all increase when deduplication is used, for

example, by 2× or 3× when compared to without deduplica-

tion. Thus, maintaining storage balance cannot achieve read

balance when deduplication is used.

The above example only considers homogeneous nodes. If

a storage system comprises heterogeneous nodes, the file read

time distribution can be more diverse since the chunks of a

file may be aggregated in a bottlenecked node. Although the

above example is contrived, we show via trace-driven analysis

that read imbalance can occur when we apply deduplication

to real-world workloads (see Section VII).

IV. PROBLEM

We formulate a combinatorial optimization problem that

searches for a data placement policy that maximizes read

balance, while preserving storage balance. We argue that the

problem has a huge solution space, which motivates us to

design an efficient but accurate data placement policy to

solve the problem. We also address how our problem can be

extended for heterogeneous settings.

We consider a reliable distributed storage system with N
nodes. It deploys (n, k) erasure coding, where k < n ≤ N ,

and places each stripe across n nodes. Suppose that we store

t files, and check if the chunks of each file to be written

can be deduplicated with the currently stored chunks (see

Section II-A). Let ui,j and di,j be the numbers of unique

chunks and duplicate chunks, respectively, of file i in node j,

where 1 ≤ i ≤ t and 1 ≤ j ≤ N . Let Ui =
∑N

j=1 ui,j be the

total number of unique chunks of file i.

A. Optimization Problem

We consider a storage system that is bottlenecked by the net-

work I/O bandwidth, and its data in different nodes is accessed

in parallel. We first assume that all nodes are homogeneous,

while we later extend the model for a heterogeneous setting.

Suppose that the read time of a file is linear to the maxi-

mum number of data chunks (including unique and duplicate

chunks) being read in a node. For file i, its read time (denoted

by Mi) is given by:

Mi = max
1≤j≤N

{ui,j + di,j}, where 1 ≤ i ≤ t. (1)

Its lower bound (denoted by Ei) is the number of data chunks

retrieved from a node when they are evenly placed across all

nodes, i.e., when Ei = ui,1 + di,1 = ui,2 + di,2 = · · · =
ui,N + di,N . We can show that

Ei =
1

N

N
∑

j=1

(ui,j + di,j), where 1 ≤ i ≤ t. (2)

We maintain read balance by minimizing the difference

between Mi and Ei for file i. While there are various ways

to characterize read balance, in this paper, we consider one

possible metric. We define a read balance gap Gi, which is a

function of ui,j’s and di,j’s, as follows:

Gi = 1−
Ei

Mi
, where 1 ≤ i ≤ t. (3)

Read balance of file i is achieved by minimizing Gi, which

attains minimum at zero (i.e., when the data chunks of file i
are evenly placed across nodes). When Gi is close to one, the

degree of read imbalance of file i becomes more severe.

With deduplication, the distribution of duplicate chunks of

a file depends on the previously stored files. Rearranging the

placement of duplicate chunks may achieve a more balanced

placement of the file, but this incurs expensive I/Os and

unbalances the placements of previous files. Thus, we fix

di,j’s in the gap Gi (see Equation 3), and we carefully place

the unique chunks (i.e., search for a distribution ui,j’s) to

minimize Gi.

In addition to read balance, we also balance the storage of

the unique chunks of t files. We write the same number of



unique chunks (denoted by C) to each node, given by:

C =
1

N

t
∑

i=1

Ui, (4)

To make memory management easier, we write chunks on a

per-batch basis, in which we fix the number of unique chunks

C to be written to each node and determine the number of files

t accordingly. Specifically, we first buffer all C unique chunks

to be written to each node (i.e., a total of N×C unique chunks

in a batch), and then decide the appropriate data placement.

We now pose a combinatorial optimization problem, whose

objective is to find a data placement policy (i.e., a set of ui,j’s)

that achieves read balance while preserving storage balance.

Problem 1:

Minimize

t
∑

i=1

Gi

subject to

N
∑

j=1

ui,j = Ui, ∀i ∈ [1, t]

t
∑

i=1

ui,j = C,

0 ≤ ui,j ≤ Ui, ∀i ∈ [1, t], j ∈ [1, N ].

Here, the objective is to minimize the sum of the read balance

gaps Gi’s for all file i. The first constraint ensures that all

unique chunks of each file will be written to one of the nodes.

The second constraint preserves storage balance by writing C
unique chunks to each node. The last constraint bounds the

range of each ui,j .

However, Problem 1 has a huge solution space. Note that

we store a total of N × C unique chunks to N nodes. There

are
(

N×C
C

)

ways to assign C unique chunks to the first node,
(

(N−1)×C
C

)

ways to assign another set of C unique chunks to

the second node, and so forth. Thus, the total number of ways

to place all unique chunks is
(

N×C
C

)

×
(

(N−1)×C
C

)

×· · ·×
(

C
C

)

=
(N×C)!
(C!)N

. The solution space is too large even for small N and

C. For instance, when N = 5 and C = 4, there are more

than 3× 1011 possible solutions. Since the objective function

depends on the current deduplication patterns (i.e., the number

of duplicate chunks in each node), the optimal solution needs

to be determined in real time. However, the huge solution

space makes the extensive search for an optimal solution

infeasible. In Section V, we propose a greedy algorithm to

efficiently solve the problem.

B. Heterogeneity Awareness

Modern distributed storage systems are often composed of

heterogeneous nodes, so the read latencies of data chunks

differ across nodes. We modify Problem 1 by introducing a

weight wj for each node j, which is defined as the read cost

per chunk for node j. Thus, the read cost of file i (denoted

by M ′
i ) is M ′

i = max1≤j≤N{wj(ui,j + di,j)}.
First, we derive the lower bound of the read cost of file i

(denoted by E′
i), which is achieved when the read costs are

evenly distributed across nodes, i.e., E′
i = w1(ui,1 + di,1) =

w2(ui,2 + di,2) = · · · = wN (ui,N + di,N ). Thus,

E′
i =

∑N
j=1(ui,j + di,j)
∑N

j=1
1
wj

. (5)

The read balance gap (denoted by G′
i) between the maximum

read cost of file i and its lower bound can be defined as:

G′
i = 1−

E′
i

M ′
i

. (6)

We replace the objective function of Problem 1 with
∑t

i=1 G
′
i

and solve the problem subject to the same constraints.

We can obtain the weights wj’s for all nodes by, for ex-

ample, periodic probe measurements [8]. Then the weight wj

may represent the reciprocal of the measured link bandwidth of

node j. We assume that the weights are fairly stable and do not

vary significantly over time, so the resulting data placement

reflects the current system conditions. We pose the issue of

performing accurate weight measurements as future work.

V. EVEN DATA PLACEMENT ALGORITHM

In this section, we propose the Even Data Placement (EDP)

algorithm, a polynomial-time greedy algorithm that aims to

efficiently identify a near-optimal data placement solution to

Problem 1 in Section IV-A. We also extend the EDP algorithm

for the heterogeneous setting.

A. Main Idea

The EDP algorithm builds on two procedures: DISTRIBUTE

and SWAP. The DISTRIBUTE procedure attempts to identify a

node to place each chunk of a batch such that the increase in

the summation of the read balance gaps is minimum. If more

than one node satisfies this criterion, then we place the chunk

at the node where the previous chunk of the same file resides

so as to keep the chunks of the same file together. The SWAP

procedure inspects the placement decision of DISTRIBUTE and

attempts to swap the chunk positions of different file pairs to

see if the summation of the read balance gaps can be further

reduced. There are two types of unique chunks in a batch

that can be swapped: (i) non-shared chunk, which appears in

exactly one file in the batch, and (ii) shared chunk, which

appears in more than one file in the batch. Since swapping

shared chunks may affect the chunk distributions of multiple

files, for simplicity, we only consider the swapping of non-

shared chunks. Note that the EDP algorithm only operates on

the chunk positions rather than the chunks, and does not incur

any actual I/O.

B. Algorithm Details

Algorithm 1 shows the pseudo-code of the EDP algorithm.

It takes the following inputs: (i) N , the number of storage

nodes; (ii) C, the number of unique chunks to be placed in

each node ; (iii) t, the number of files in a batch; (iv) U =
(Ui|1 ≤ i ≤ t), a vector where each entry is the number of

unique chunks of each file; (v) d = (di,j |1 ≤ i ≤ t, 1 ≤
j ≤ N), a vector where each entry is the number of duplicate



Algorithm 1 Even Data Placement Algorithm

1: function EDP(t,N,C,U,F,d)
2: ui,j ← 0, 1 ≤ i ≤ t, 1 ≤ j ≤ N
3: Cj ← C, 1 ≤ j ≤ N
4: T ← 0
5: for i = 1 to t do
6: DISTRIBUTE(i, T,U,C,F,u,d)
7: S ←

∑i

k=1 Gk

8: for i′ = 1 to i− 1 do
9: SWAP(i, i′,u,d, S)

10: end for
11: T ← T + Ui

12: end for
13: end function
14: function DISTRIBUTE(i, T,U,C,F,u,d)
15: for l = 1 to Ui do
16: j∗ ← ID of node that minimizes change of Gi

17: ui,j∗ ← ui,j∗ + 1
18: for each i′ ∈ Fl+T do
19: di′,j∗ ← di′,j∗ + 1
20: end for
21: Cj∗ ← Cj∗ − 1
22: end for
23: end function
24: function SWAP(i, i′,u,d, S)
25: for each storage node pair (j, j′) do
26: mi,j← number of non-shared chunks of file i on node j
27: mi′,j′←number of non-shared chunks of file i′ on node j′

28: for z = 1 to min(mi,j , mi′,j′ ) do

29: Sz ←
∑i

k=1 Gk, if z non-shared chunks of
files i and i′ are swapped between nodes j and j′

30: end for
31: z∗ ← argmin1≤z≤min(mi,j ,mi′,j′ )

Sz

32: if Sz∗ < S then
33: Swap z∗ chunks of file i,i′ between nodes j,j′

34: Update placement of the swapped chunks
35: S ← Sz∗

36: end if
37: end for
38: end function

chunks of each of the t files on each of the N nodes; and (vi)

F = (Fl|1 ≤ l ≤ N×C), a vector where each entry is the list

of files in the batch that share the unique chunk l. It outputs

u = (ui,j |1 ≤ i ≤ t, 1 ≤ j ≤ N), a vector where each entry

indicates the number of unique chunks of each of the t files

to place in each of the N nodes.

For each file, the EDP algorithm first calls DISTRIBUTE

(Line 6) to assign unique chunks of each file i to the storage

nodes. It also records the current objective value (Line 7). It

then calls SWAP to attempt to swap the chunk positions of the

current file with those of the previous files to further reduce

the objective value (Lines 8-10).

In DISTRIBUTE, for each unique chunk (Line 15), EDP

tentatively assigns it to each of the N nodes, and finds the

node that minimizes the change of Gi if the chunk is assigned

to it (Line 16). If there are multiple nodes that have the same

minimal change of Gi, EDP assigns the chunk to the same

node as the previous chunk. Then EDP increments the number

of unique chunks for the current file on that node by one

(Line 17). For other files in the batch that share this unique

chunk, EDP increments the number of duplicate chunks of

each such file on the selected node by one (Lines 18-20).

Finally, EDP decrements the allowable number of chunks on

the selected node by one (Line 21).

In SWAP, EDP inspects possible swaps of placement de-

cisions for a given pair of files denoted by indices i and i′

between each possible pair of nodes denoted by indices j
and j′ (Line 25). EDP focuses on the non-shared chunks, and

counts the number of non-shared chunks of files i and i′ on

nodes j and j′ as mi,j and mi′,j′ , respectively (Lines 26-

27). Then EDP tries all possible numbers of unique chunks,

denoted by z, from one up to min(mi,j ,mi′,j′), to swap

(Line 28). For each z, EDP records the revised objective value

if z non-shared chunks of files i and i′ are swapped between

nodes j and j′ (Line 29). EDP picks z that minimizes the

objective value as z∗ (Line 31). If the objective value after

swapping is smaller than that without swapping, the swap

decision will be made (Lines 32-36).

C. Example

Figure 2 shows an illustrative example with two files in

a batch to be stored on a system of three nodes using

(3,2) erasure coding. We set C = 2. As shown in Fig-

ure 2(a), suppose that file 1 has four unique chunks and has

(d1,1, d1,2, d1,3) = (2, 0, 1), and that file 2 has four unique

chunks and has (d2,1, d2,2, d2,3) = (1, 1, 0).
To balance the placement of chunks of file 1, EDP places

two unique chunks on nodes 2 and 3, as shown in Figure 2(b).

As both chunks A and C are shared by file 2, EDP updates

(d2,1, d2,2, d2,3) = (1, 2, 1). For file 2, DISTRIBUTE can

only assign its two unique chunks to node 1. At the end of

DISTRIBUTE, the distributions of unique and duplicate chunks

of files 1 and 2 are: (u1,1 + d1,1, u1,2 + d1,2, u1,3 + d1,3) =
(2, 2, 3) and (u2,1 + d2,1, u2,2 + d2,2, u2,3 + d2,3) = (3, 2, 1),
respectively.

SWAP now tries swapping the positions of non-shared

chunks of files 1 and file 2. Before SWAP, the objective

value (i.e., the sum of read balance gaps of files 1 and 2)

is (1 − 7/3
3 ) + (1 − 2

3 ) = 5
9 . Suppose now we try to swap

chunks E and D, as shown in Figure 2(d). The revised distri-

butions of unique and duplicate chunks of files 1 and 2 will

become: (u1,1 + d1,1, u1,2 + d1,2, u1,3 + d1,3) = (3, 2, 2) and

(u2,1 + d2,1, u2,2 + d2,2, u2,3 + d2,3) = (2, 2, 2), respectively.

The objective value can reduce to (1 − 7/3
3 ) + (1 − 2

2 ) =
2
9 .

This shows that swapping of chunks E and D can achieve

better read balance.

D. Complexity Analysis

We now derive the worst-case complexity of the EDP

algorithm. For each chunk of file i, DISTRIBUTE inspects all

N storage nodes and a list of up to t files. Thus, the complexity

of DISTRIBUTE on processing file i is O(Ui(N + t)). On the

other hand, the SWAP procedure scans possible swaps for file i
and each of previous i− 1 files between every pair of nodes,

and one swapping can involve up to C chunks. Thus, the com-

plexity for SWAP to process file i is O((i− 1)CN2). Hence,



(a) Example of files: assuming
(d1,1, d1,2, d1,3) = (2, 0, 1) and
(d2,1, d2,2, d2,3) = (1, 1, 0).

(b) Greedy placement of File 1:
(u1,1, u1,2, u1,3) = (0, 2, 2);
(d2,1, d2,2, d2,3) = (1, 2, 1).

(c) Greedy placement of File 2.
(u2,1, u2,2, u2,3) = (2, 0, 0).

(d) Swapping E and D.

Fig. 2. Illustration of the EDP algorithm for two files, where N = 3, C = 2,
(n, k) = (3, 2).

the overall complexity of EDP when processing t files is

O(max{
∑t

i=1 Ui(N + t),
∑t

i=1(i− 1)CN2}) = O(CN2t2),
which is in polynomial time.

E. Extensions

We consider two extensions, which account for heterogene-

ity and variable-size chunks.

Heterogeneity: Algorithm 1 can be modified slightly to

adapt to the heterogeneous scenario, and we call it the Cost-

based Even Data Placement (CEDP) algorithm. According to

Section IV-B, the read balance gap is computed based on the

node weights. For CEDP, the only change to EDP is to modify

the calculation of the read balance gap in Lines 7, 16, and 29

of Algorithm 1. Other steps remain the same.

Variable-size chunking: We can extend Algorithm 1 to

support variable-size chunking by calculating the read balance

gap as a function of the number of bytes (rather than the

number of chunks). We still write C unique chunks to each

node to maintain storage balance, yet we modify u and d to

indicate the numbers of unique and duplicate bytes, respec-

tively. Specifically, let L = {Li,j |1 ≤ i ≤ t, 1 ≤ j ≤ Ui},
where Li,j is the length of chunk j of file i. In DISTRIBUTE,

we modify Lines 17 and 19 as ui,j∗ ← ui,j∗ + Li,l and

di′,j∗ ← di′,j∗ +Li,l, respectively. Also, in SWAP, we modify

Lines 29 and 33 to update ui,j and ui′,j′ by the number of

bytes of unique chunks that are swapped. We also modify

the objective functions in Equations (3) and (6) in terms of

numbers of bytes.

VI. IMPLEMENTATION

We implement a distributed storage system prototype that

realizes deduplication and erasure coding and supports dif-

ferent data placement policies including the baseline (see

Section III), EDP, and CEDP. Figure 3 shows the system

architecture, which comprises three main components: one or

multiple clients, a metadata server, and multiple storage nodes.

File writes operate on a per-batch basis (see Section IV-A).

Specifically, a client divides files into chunks and computes the

fingerprints. For each batch of chunks to be written, the client

sends the fingerprints to the metadata server, which performs

Fig. 3. Architectural overview of our prototype.

deduplication and runs the data placement policy (e.g., the

baseline, EDP, or CEDP). The metadata server also maintains

the file metadata to keep track of chunks associated with a file.

It then responds to the client with the list of unique chunks

and how they are placed across nodes. The client then applies

erasure coding to the unique chunks, and writes the encoded

chunks to different nodes in parallel.

File reads operate in the reverse way. To read a file, the

client queries the metadata server for all required chunks of a

file. It then reads all chunks from the nodes in parallel. In the

presence of node failures, the client issues degraded reads to

retrieve k data and parity chunks from other surviving nodes

to decode the unavailable chunks.

To integrate with erasure coding, we group every k unique

chunks as the data chunks of a stripe. To balance the dis-

tribution of parity chunks, we enumerate all
(

N
n

)

possible

stripe permutations and n possible parity rotations. Thus, the

resulting batch size is N ×C =
(

N
n

)

×n×k data chunks. We

pick C accordingly given N , n, and k.

To improve disk I/O efficiency, each storage node organizes

data in containers [29], which serve as disk read/write units.

We now configure each container to keep at most 64 chunks.

When a node writes a chunk, it first appends the chunk to an

in-memory container, which is flushed to disk when it is full.

To read a chunk, the node reads the corresponding container

as a whole into the local cache and retrieves the chunk.

We implement our prototype in C, and realize some op-

erations using open-source libraries. We choose and imple-

ment 160-bit SHA-1 as fingerprints for deduplication using

OpenSSL [20]. We also choose and implement Reed-Solomon

coding [25] as our erasure coding scheme using Jerasure 2.0

[21] and GF-Complete [22]. In the metadata server, we main-

tain metadata in key-value databases and implement them

using the Kyoto Cabinet library [10].

VII. EVALUATION

In this section, we compare the performance of our EDP and

CEDP algorithms with that of the baseline placement policy

defined in Section III. Our evaluation consists of two parts:

simulations and testbed experiments, both of which are driven

by real-world workloads.

A. Datasets

We drive our evaluation using three public datasets:

• FSLHOME: It is published by the File system and

Storage Lab (FSL) at Stony Brook University [27]. It



contains daily snapshots of the home directories of nine

students on a shared network file system. Each snapshot

comprises chunk fingerprints of multiple files obtained

by variable-size chunking. Due to the large dataset size,

we sample a subset of snapshots in year 2013. Our final

FSLHOME dataset consists of a total of 104 snapshots,

whose fingerprints are derived from the average chunk

size of 4KB using variable-size chunking. Each snapshot

has 197K to 210K files.

• LINUX: It contains 15 versions of unpacked Linux kernel

source code [1], sampled from versions 2.6.35 to 3.16.3.

Each version has size 393.77MB to 551.91MB of data

with 30K to 50K files.

• LINUXTAR: It packs each version of the Linux kernel

source code [1] into a single tarball file. It consists of

321 versions of uncompressed tarballs. Each tarball has

size 4.93MB to 553.54MB of data.

Our evaluation studies the backup scenario. In each backup

operation, we store a snapshot (for FSLHOME) or a version

(for LINUX and LINUXTAR) and aim to achieve read balance

for the files within each backup based on Problem 1. Note that

the datasets are composed of different file size distributions:

both FSLHOME and LINUX comprise many small files in

each backup, while LINUXTAR contains one large tarball file

in each backup. Thus, our evaluation addresses the impact of

file size distributions on read balance.

For both FSLHOME and LINUX, we filter small files of size

less than 16KB, so that we can distinguish more clearly the

read balance gaps of the data placement schemes based on the

large files with enough numbers of chunks. These small files

only account for 2.53% and 5.84% of total sizes of FSLHOME

and LINUX, respectively. Note that there is no small file in

LINUXTAR.

The total logical sizes of FSLHOME, LINUX, and LINUX-

TAR are 6.46TB, 7.81GB, and 101GB, respectively (after we

filter the small files of FSLHOME and LINUX). The physical

storage sizes of FSLHOME, LINUX, and LINUXTAR after

deduplication with 4KB variable-size chunking reduce to

0.34TB, 1.89GB, and 38.8GB, or equivalently, save 94.74%,

75.8%, and 61.50% of disk space, respectively. If we use

deduplication with 4KB fixed-size chunking for LINUX and

LINUXTAR, the savings are 70.04% and 53.01% disk space

for LINUX and LINUXTAR, respectively.

B. Simulations

By default, our simulations consider a storage system with

N = 16 nodes, and deploy (n, k) = (14, 10) erasure coding

as in [26]. We also set C =
(

16
14

)

× 14 × 10/16 = 1, 050
(see Section VI) to balance the parity load. For the chunking

scheme, we use 4KB variable-size chunking for FSLHOME,

and 4KB fixed-size chunking for LINUX and LINUXTAR.

Effectiveness of EDP: We analyze the read balance prob-

lem and answer the following questions: (i) how severe read

imbalance is in the baseline data placement policy; and (ii)

how well the EDP/CEDP algorithm tackles the problem. We

start with the homogeneous setting. We determine the chunk

placements of the baseline and EDP algorithms based on

chunk fingerprints and file metadata, and record the chunk

distribution of each file. We then calculate the read balance

gap of each file using Equation (3).

Figure 4 plots the cumulative distributions of files versus

their gaps for FSLHOME, LINUX, and LINUXTAR. For

FSLHOME, the baseline only keeps 22.59% of files evenly

distributed; and around 75% of files have gaps between 10%

and 50%. For LINUX, the baseline causes 42.95% of files

to have gaps between 20% and 80%. For LINUXTAR, the

baseline causes 13.3% of files to have non-zero gaps. On the

other hand, EDP increases the percentage of evenly distributed

files in FSLHOME, LINUX, LINUXTAR to 90%, 100%, and

100%, respectively.

Impact of erasure coding: We now study the read balance

under different values of the system size N and erasure coding

configurations (n, k). We consider two read balance metrics:

(i) read balance and (ii) degraded read balance. For degraded

reads, we consider the single node failure only (which is the

common failure scenario [11, 26]), and simulate the failure

by disabling the first node. We focus on the homogeneous

setting, and compute both read balance and degraded read

balance metrics of the baseline and EDP algorithms following

Equation (3), in which we compute the gap as one minus

the ratio of the even number of read chunks of a file to the

maximum number of read chunks of the file over all nodes.

We focus on FSLHOME, while the results for LINUX

and LINUXTAR are similar. Figures 5 compares the read

balance and degraded read balance metrics for the baseline

and EDP algorithms using FSLHOME. For read balance (see

Figure 5(a)), the baseline leads to high gaps that range between

20% and 30%, while EDP reduces the gaps to 5%. EDP also

keeps a smaller gap than the baseline in degraded read balance

(see Figures 5(b)).

Impact of heterogeneity: We simulate heterogeneous en-

vironments with varying I/O bandwidths across nodes. We

assume that the link bandwidths of storage nodes follow a

uniform distribution so as to simulate a distributed storage

environment [15]. Here, we randomly assign the bandwidth

to each node using four uniform distributions: [1,120]Mbps,

[10,120]Mbps, [30,120]Mbps, and [60,120]Mbps. We calcu-

late the average improvement ratio of both EDP and CEDP

algorithms over the baseline for each file, in terms of the reduc-

tion of read latency. For CEDP, the weight wj (1 ≤ j ≤ 16)
associated with each storage node is set as the reciprocal of

the I/O bandwidth of the node (see Section IV-B).

Figure 6 shows the results. When the I/O bandwidths are

highly varying, CEDP improves the baseline by 50.89%,

48.90%, and 42.55% for FSLHOME, LINUX, and LINUX-

TAR, respectively, yet EDP shows very small improvements.

For FSLHOME and LINUX, the improvements of EDP and

CEDP become similar when the I/O bandwidths are less

varying; for LINUXTAR, EDP is almost identical to the

baseline (which conforms to the results in Figure 4(c)), and

CEDP improves the latency of both the baseline and EDP.

Overall, CEDP remains robust in heterogeneous environments.
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Fig. 4. Cumulative distributions of files versus performance gaps for the baseline and EDP algorithms.
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Fig. 6. Read latency improvements of EDP and CEDP over baseline.

C. Testbed Experiments

We evaluate via testbed experiments the read performance

of various data placement algorithms using our prototype in

Section VI. Our testbed consists of one client node, one

metadata server node, and 16 storage nodes. We run each node

on a multi-core machine, and interconnect all machines via

a Gigabit Ethernet switch. The machines have varying CPU,

RAM, and harddisk configurations. Here, we configure envi-

ronments where the network transmission is the bottleneck. In

a homogeneous setting, all nodes are configured with 100Mbps

link bandwidth; in a heterogeneous setting, we configure five

storage nodes with 10Mbps link bandwidth, six storage nodes

with 100Mbps link bandwidth, and the five remaining storage

nodes with 1Gbps link bandwidth. The client node and master

node are configured with 1Gbps link bandwidth. All nodes run

Ubuntu 12.04.2 with Linux kernel 3.5.

We mainly focus on LINUX and LINUXTAR so as to

evaluate both fixed-size and variable-size chunking schemes.

Both chunking schemes choose 4KB as the chunk size. The

client writes each version, ordered by the version number,

to the prototype. After that, the client reads all files of

each version and records the read latency. We compute the

normalized read latency of each file using EDP or CEDP

with respect to that of the same file using the baseline. We

then compute the average normalized latencies of all files. For

CEDP, we set the weight wj (1 ≤ j ≤ 16) associated with

each storage node as the reciprocal of the link bandwidth of

the node. The testbed results are averaged over five runs.

Impact of chunking schemes: We compare the read latency

results for both fixed-size and variable-size chunking schemes.

In the interest of space, we only present the results of LINUX.

Figures 7(a) and 7(b) show the results in the homogeneous

testbed for both chunking schemes. On average, EDP reduces

the read latency of the baseline by 37.41% and 21.38% for

fixed-size and variable-size chunking schemes, respectively.

We see that the normalized read latency of EDP is higher

with variable-size chunking. The reason is that in variable-

size chunking, the read latency may be determined by some

chunks that have size larger than the average chunk size. This

reduces the performance gap between EDP and the baseline.

Figures 7(c) and 7(d) present the results in the heteroge-

neous testbed. EDP is agnostic about heterogeneity. Its read

latency reduction over the baseline drops to 22.12% for fixed-

size chunking; even worse, it increases the read latency of

the baseline by 10.79% for variable-size chunking. CEDP

addresses the issue by taking into account the heterogeneous

bandwidths. It reduces the averaged read latency over the

baseline by 52.11% and 25.74% for fixed-size and variable-

size chunking schemes, respectively.

Read latency distribution: We further examine the actual

read latency distributions, as shown in Figure 8. Figures 8(a)

and 8(b) show the read latency distributions for the files in
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Fig. 7. Average normalized read latency for files of LINUX.
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Fig. 8. Read latency distributions of Linux 3.16.3 and LINUXTAR (the files in the x-axis are sorted by the order that they are written to the prototype).

the last Linux version 3.16.3 using fixed-size chunking in

both homogeneous and heterogeneous testbeds, respectively.

In general, EDP improves the read latency for most of the

files compared to the baseline in homogeneous prototype (see

Figure 8(a)); in the heterogeneous prototype, CEDP reduces

the read latency compared to both the baseline and EDP

for most files (see Figure 8(b)). Figure 8(c) shows the read

latency distributions for all 321 versions in LINUXTAR.

CEDP outperforms the baseline by 35.74%, and can save up

to 10 seconds for some backup versions.

D. Computational Overhead

EDP improves file read performance at the cost of extra

computational overhead on the write path compared to the

baseline. We evaluate the computational overhead of EDP by

measuring the processing time of determining the placement

of unique chunks in a batch. We conduct our evaluation

on a machine with an Intel CPU at speed 3.4GHz. We

evaluate processing time by generating unique chunks with

/dev/urandom and feeding a batch of unique chunks to

the EDP algorithm for processing. We vary the number of

files inside the batch from 1 to 2, 400. We assume that each

file is of equal size.

Figure 9 shows the processing times of the baseline and
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Fig. 9. Batch processing time of the baseline and EDP with various numbers
of files in a batch.

EDP algorithms with different numbers of files. As the number

of files increases, the processing time of EDP increases at

a rate faster than that of the baseline, since its complexity

is quadratic to the number of files (see Section V-D). Nev-

ertheless, the processing time remains small. For example,

with 960 files, the average processing time of EDP is around

0.20s; if the chunk size is 4KB, the processing throughput is

around 328.13MB/s. We can further increase the throughput,

for example, by parallelizing the EDP algorithm.

VIII. RELATED WORK

While deduplication effectively reduces storage space, it

leads to degradation of read performance due to fragmentation,

in which logically sequential data is scattered across physical



address space. Recent studies propose techniques to improve

read performance of deduplication systems, for example, by

selective rewrites [12, 14, 17] or hybrid inline/offline dedu-

plication [16]. Such read-enhancement techniques target a

single node, while our work considers a distributed setting

and improves read performance by maintaining load balance

across nodes.

Reliability of chunks in distributed deduplication has also

been studied. It is shown that chunks with different popu-

larities have different degrees of reliability, so they should

be replicated proportionally [6, 7]. Some distributed storage

systems deploy deduplication and erasure coding to improve

storage efficiency and data availability [9, 18, 19]. R-ADMAD

[18] deploys deduplication with variable-size chunking over

erasure-coded storage systems. Hydrastor [9] deploys dedu-

plication and erasure coding for commercial backup storage.

Reliability analysis in distributed deduplication is also studied

[19]. Our work addresses load balance in a setting with

deduplication and erasure coding, which to our knowledge is

not addressed in prior studies.

IX. CONCLUSIONS

We study the load balance problem in a distributed stor-

age system that employs two well-developed technologies

namely deduplication and erasure coding. We point out that

deduplication inherently cannot maintain read balance as the

deduplicated chunks are unevenly distributed across nodes. We

formulate a combinatorial optimization problem, and propose

the Even Data Placement (EDP) algorithm, a polynomial-time

greedy algorithm that minimizes the read balance gap subject

to the storage balance constraint. We further extend the EDP

algorithm for heterogeneous environments. Extensive trace-

driven simulations and testbed experiments show that EDP

improves read performance and preserves storage balance. In

addition to storage efficiency and data availability respectively

provided by deduplication and erasure coding, our work fur-

ther enhances the parallel I/O performance of a distributed

storage system through the design of a load-balance data place-

ment scheme. The source code of our prototype is available for

download at http://ansrlab.cse.cuhk.edu.hk/software/edp.
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