next up previous
Next: Graphs Up: Discrete Math, Second Series, Previous: Revisit the first problem

Finite probability spaces.


\begin{exercise}
% latex2html id marker 852
Let $G \le S_n$\ is a transitive per...
...or random variables. (See the Finite
Probability Spaces handout.)
\end{exercise}

Interpretation: we can consider $ A$ and $ B$ as events on the probability space % latex2html id marker 1951
$ \Omega$ (randomly pick a point % latex2html id marker 1953
$ x\in\Omega$; the events are whether $ x\in A$ and whether $ x\in B$). We call $ A$ and $ B$ ``independent events'' if $ P(A\cap B)=P(A)P(B)$, ie., if $ P(x\in A\cap B)=P(x\in A)P(x\in B)$, or yet in other words, if $ \vert A\cap B\vert/n=(\vert A\vert/n)(\vert B\vert/n).$ The intuitive meaning of the formula stated in the exercise becomes more evident in this context if we divide each side by $ n$:

$\displaystyle E(\frac{\vert A\cap B^\sigma\vert}{n})=\frac{\vert A\vert}{n}\cdot\frac{\vert B\vert}{n}.$

This means $ A$ and $ B^{\sigma}$ behave like independent events in the expectation.

Enhanced hint. Show that if $ x$ is randomly chosen from % latex2html id marker 1979
$ \Omega$ and $ \sigma$ is randomly chosen from a transitive group $ G$ then the events $ x\in A$ and $ x\in B^{\sigma}$ are independent. (This is immediate if $ G=S_n$ (why?) but remains true for any transitive group $ G$.) Then use indicator variables to show how this translates into the expected intersection size of $ A$ and $ B^{\sigma}$.



Varsha Dani 2003-08-04