next up previous
Next: About this document ... Up: Discrete Math, 13th Problem Previous: Large primitive groups

Min size of distinguishing sets

We spend the rest of this class with proving the Main technical theorem above.


\begin{exercise}
% latex2html id marker 1211$\vert D(x,y)\vert$\ depends only on $c(x,y)$.
\end{exercise}

Notation 3.1   Let $ D(i) := \vert D(x,y)\vert$, where $ i = c(x,y)$. % latex2html id marker 2785
$ X_i = (\Omega; R_i)$. Let % latex2html id marker 2787
$ X_i' = (\Omega; R_i \cup R_i^{-1})$ be the corresponding undirected graph.

Lemma 3.2   For $ i \ge 1$, if $ X_i'$ is not the complete graph, then % latex2html id marker 2794
$ \mathop{\rm diam}\nolimits (\overline{X_i'}) = 2$.

Proof. There exist $ x,y$ at distance $ 2$ in $ \overline{X_i'}$, because there exist $ x,z$ not adjacent in $ \overline{X_i'}$, but $ \overline{X_i'}$ is connected by primitivity, and so the third vertex of any minimal $ x,z$-path is at distance $ 2$ from $ x$.

Now take any % latex2html id marker 2817
$ u,v \in \Omega$, not adjacent in $ \overline{X_i'}$. Need to show: $ {\mathrm {dist}}_{\overline{X_i'}} (u,v) \ge 2$. Need to show: $ u,v$ have a common neighbor in $ \overline{X_i'}$. $ c(u,v) \in \{i, i^{-1}\}$. Implies # common neighbors of $ u,v$ in $ \overline{X_i'}$ is the same as for $ x,y$. $ \qedsymbol$


\begin{exercise}
% latex2html id marker 1216If $X$\ is a regular graph of degree $\rho$\ and diameter = 2,
then $\rho \ge \sqrt{n-1}$.
\end{exercise}


\begin{exx}
% latex2html id marker 1218$\rho = \sqrt{n-1}$\ under the above co...
... exercise is only
for students who took the first half of this course.
\end{exx}

Lemma 3.3   $ (\forall i \ge 1)(
\rho_i \le n - 1 - \sqrt{n-1})$.

Proof. If $ X_i'$ is the complete graph, then $ \rho_i = (n-1)/2$ and we are done. Otherwise, use Lemma [*] and Exercise [*]. $ \qedsymbol$

Notation 3.4   We shal consider the average distinguishing number

$\displaystyle \overline{D} = \frac{\sum_{x \ne y} \vert D(x,y)\vert}{n(n-1)}.
$

Also, let $ \rho_{\max} := \max_i \rho_i$.

Lemma 3.5   $ \overline{D} \ge n - \rho_{\max} \ge \sqrt{n-1} + 1 \sim \sqrt{n}$.

Proof. Count the number of triples $ (x,y,z)$ such that $ z \notin D(x,y)$. This means $ c(x,z) = c(y,z) = \rho_i$ for some $ i$. This is

$\displaystyle n - \overline{D} = \frac{\sum_{i = 1}^{r-1} \rho_i (\rho_i - 1)}{n-1} \le
\rho_{\max}
\frac{\sum_{i=1}^{r-1} (\rho_i - 1)}{n-1} < \rho_{\max}.
$

$ \qedsymbol$

Lemma 3.6   $ D(i) \le {\mathrm {dist}}_{X_j'} (i) D(j)$.

Proof. Let $ x_0, x_1, \dots, x_d$ be a in $ X_j'$ path where $ c(x_0, x_d) = i$. $ D(x_0, x_d) \subseteq \cup_{i=1}^d D(x_{i-1},x_i)$. The size on the left side is $ D(i)$; all stes on the right side have size $ D(j)$. $ \qedsymbol$

Notation 3.7   % latex2html id marker 2885
$ \mathop{\rm diam}\nolimits (i):=\mathop{\rm diam}\nolimits (X_i').$

Corollary 3.8   % latex2html id marker 2888
$ D(j) \ge \overline{D}/\mathop{\rm diam}\nolimits (j)$.

Proof. Need: % latex2html id marker 2893
$ \overline{D} \le \mathop{\rm diam}\nolimits (j) D(j)$. Pick $ i$ such that $ D(i) \ge \overline{D}$. Then % latex2html id marker 2899
$ {\mathrm {dist}}_{X_j'}(i) \le \mathop{\rm diam}\nolimits (X_j')=\mathop{\rm diam}\nolimits (j)$. $ \qedsymbol$

Corollary 3.9   If % latex2html id marker 2902
$ \mathop{\rm diam}\nolimits (i) = 2$ then $ D(i) \gtrsim \sqrt{n}/2$.

Lemma 3.10 (Zemlyachenko)   If % latex2html id marker 2907
$ \mathop{\rm diam}\nolimits (i) \ge 3$ then $ D(i) \ge \rho_i/3$.

Proof. Let $ x,y,z,w$ be a shortest path from $ z$ to $ w$ in $ X_i'$. Let $ X_i'(x) = \{$ neighbors of $ x$ in color $ i$ $ \}$.

Claim 3.11   $ X_i'(x) \subseteq D(x,w)$ and $ D(i) \ge \vert D(x,w)\vert/3$. The Lemma is immediate from the following claim:

The claim is easy: if some $ X_i'$-neighbor $ u$ of $ x$ did not distinguish $ x$ from $ w$ then $ c(u,w)=c(u,x)=i^{\pm}$, so $ x-u-w$ would be an $ X_i'$-path of length 2, contradicting the assumption that $ {\mathrm {dist}}_i(x,w)=3$. Now $ \vert D(x,w)\vert\le 3D(i)$ by Lemma [*]. $ \qedsymbol$


\begin{exercise}
% latex2html id marker 1234Suppose there exists an edge of co...
...(x)$. Then there exist at least $\max(\rho_i, \rho_j)$such edges.
\end{exercise}

Lemma 3.12   $ (\forall h \ne 0)(\forall x)(x$    distinguishes at least $ n-1$ pairs of color $ h$$ )$.

Proof. Let us construct a graph $ H$ using the set $ V = \{0, 1, \dots, r-1\}$ of colors as vertex set. Let $ w(i,j)$ be the number of edges of color $ h$ or $ h^{-1}$ from $ X_i(x)$ to $ X_j(x)$. Put an edge between $ i$ and $ j$ if $ w(i,j)\neq 0$; assign weight $ w(i,j)$ to this edge. It follows from Exerciseconn-ex that if there is an $ \{i,j\}$ edge then $ w(i,j) \ge \max(\rho_i, \rho_j)$.

$ H$ is a connected graph. This follows from the primitivity of $ \ensuremath{\mathfrak{X}}$ (why?). Let $ T$ be a spanning tree of $ H$. Let us orient $ T$ away from vertex (color) 0. $ x$ distinguishes $ \ge \tau$ edges of color $ h$, where $ \tau := $ total weight of edges of $ T$.

$\displaystyle \tau = \sum_{i \to j} w(i,j) \ge \sum_{i \to j} \rho_j
= \sum_{i=1}^{r-1} \rho_j = n-1.
$

$ \qedsymbol$

Corollary 3.13   $ D(i) \ge (n-1)/\rho_i$.

Proof. Count the triples $ N = \left\vert\{(x,y,z) \mid c(x,y) = i, z \in D(x,y)\}\right\vert$ in two different ways.

Count by $ (x,y)$. The number of pairs $ (x,y)$ such that $ c(x,y) = i$ is $ n \rho_i$. For each such pair, there are $ D(i)$ choices for $ z$. Thus,

$\displaystyle N = n \rho_i D(i).
$

Now count by $ z$. There are $ n$ choices for $ z$. Given $ z$, there are at least $ n-1$ pairs $ (x,y)$ distinguished by $ z$. Thus

$\displaystyle N = n \rho_i D(i) \ge n(n-1),
$

and so

$\displaystyle \rho_i D(i) \ge n-1.
$

$ \qedsymbol$

Corollary 3.14   If % latex2html id marker 3060
$ \mathop{\rm diam}\nolimits (i)\ge 3$ then $ D(i) \gtrsim \sqrt{n/3}.$

Proof. Multiplying the expressions for $ D(i)$ from Lemma [*] and Corollary [*], we get

$\displaystyle D(i)^2 \ge \frac{\rho_i}{3}\cdot \frac{n-1}{\rho_i} = \frac{n-1}{3}.
$

Thus

$\displaystyle D(i) \ge \sqrt{\frac{n-1}{3}} \sim \frac{\sqrt{n}}{\sqrt{3}}.
$

$ \qedsymbol$

This result, combined with Corollary [*], completes the proof of the Main Theorem.


This proof is based on L. Babai: ``On the order of uniprimitive permutation groups,'' Annals of Math. 113 (1981), 553-568, as simplified by N. Zemlyachenko a year later.

Conjecture 3.15   For uniprimitive coherent configurations, % latex2html id marker 3074
$ D_{\min} = \Omega(n - \rho_{\max})$. (Note that this is true for the average rather than the minimum size of distinguishing sets by Lemma [*].)

Another open question:

Conjecture 3.16   For primitive coherent configurations of rank $ r\ge 4$, % latex2html id marker 3079
$ D_{\min} = \Omega(n^{1 - 1/(r-1)}))$. Or at least % latex2html id marker 3081
$ D_{\min} = \Omega(n^{1 - f(r)})$, where $ f(r) \to 0$.

Note that the first statement is true for $ r=2$.


next up previous
Next: About this document ... Up: Discrete Math, 13th Problem Previous: Large primitive groups
Varsha Dani 2003-08-15